Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2301049

ABSTRACT

We examined whether the second monovalent SARS-CoV-2 mRNA booster increased antibody levels and their neutralizing activity to Omicron variants in nursing home residents (NH) residents and healthcare workers (HCW). We sampled 376 NH residents and 63 HCW after primary mRNA vaccination, first and second boosters, for antibody response and pseudovirus neutralization assay against SARS-CoV-2 wild-type (WT) (Wuhan-Hu-1) strain, Omicron BA.1 and BA.5 variants. Antibody levels and neutralizing activity progressively increased with each booster but subsequently waned over 3-6 months. NH residents, both those without and with prior infection, had a robust geometric mean fold rise (GMFR) of 8.1 (95% CI 4.4, 14.8) and 7.8 (95% CI 4.8, 12.9) respectively in Omicron-BA.1 subvariant specific neutralizing antibody levels following the second booster vaccination (p<0.001). These results support the ongoing efforts to ensure that both NH residents and HCW are up-to-date on recommended SARS-CoV-2 vaccine booster doses.

2.
Open Forum Infect Dis ; 10(2): ofad063, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2259586

ABSTRACT

Background: Latent cytomegalovirus (CMV) infection is immunomodulatory and could affect mRNA vaccine responsiveness. We sought to determine the association of CMV serostatus and prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with antibody (Ab) titers after primary and booster BNT162b2 mRNA vaccinations in healthcare workers (HCWs) and nursing home (NH) residents. Methods: Nursing home residents (N = 143) and HCWs (N = 107) were vaccinated and serological responses monitored by serum neutralization activity against Wuhan and Omicron (BA.1) strain spike proteins, and by bead-multiplex immunoglobulin G immunoassay to Wuhan spike protein and its receptor-binding domain (RBD). Cytomegalovirus serology and levels of inflammatory biomarkers were also measured. Results: Severe acute respiratory syndrome coronavirus 2-naive CMV seropositive (CMV+) HCWs had significantly reduced Wuhan-neutralizing Ab (P = .013), anti-spike (P = .017), and anti-RBD (P = .011) responses 2 weeks after primary vaccination series compared with responses among CMV seronegative (CMV-) HCWs, adjusting for age, sex, and race. Among NH residents without prior SARS-CoV-2 infection, Wuhan-neutralizing Ab titers were similar 2 weeks after primary series but were reduced 6 months later (P = .012) between CMV+ and CMV- subjects. Wuhan-neutralizing Ab titers from CMV+ NH residents who had prior SARS-CoV-2 infection consistently trended lower than titers from SARS-CoV-2 experienced CMV- donors. These impaired Ab responses in CMV+ versus CMV- individuals were not observed after booster vaccination or with prior SARS-CoV-2 infection. Conclusions: Latent CMV infection adversely affects vaccine-induced responsiveness to SARS-CoV-2 spike protein, a neoantigen not previously encountered, in both HCWs and NH residents. Multiple antigenic challenges may be required for optimal mRNA vaccine immunogenicity in CMV+ adults.

3.
Infect Dis Clin North Am ; 37(1): 27-45, 2023 03.
Article in English | MEDLINE | ID: covidwho-2275230

ABSTRACT

Institutionalized and community-dwelling older adults have been greatly impacted by the coronavirus disease 2019 (COVID-19) pandemic with increased morbidity and mortality. The advent of vaccines and their widespread use in this population has brought about a dramatic turnaround in COVID-19 outcomes. The immunogenicity and effectiveness of the various vaccine options worldwide are discussed. Optimization of vaccine usage will still be important to maximize protection due to reduced initial immunity, development of variant strains, and fading of immunity over time. There are also lessons learned specific to older populations for future pandemics of novel pathogens.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , COVID-19/prevention & control , SARS-CoV-2
4.
MMWR Morb Mortal Wkly Rep ; 72(4): 100-106, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2217722

ABSTRACT

Introduction of monovalent COVID-19 mRNA vaccines in late 2020 helped to mitigate disproportionate COVID-19-related morbidity and mortality in U.S. nursing homes (1); however, reduced effectiveness of monovalent vaccines during the period of Omicron variant predominance led to recommendations for booster doses with bivalent COVID-19 mRNA vaccines that include an Omicron BA.4/BA.5 spike protein component to broaden immune response and improve vaccine effectiveness against circulating Omicron variants (2). Recent studies suggest that bivalent booster doses provide substantial additional protection against SARS-CoV-2 infection and severe COVID-19-associated disease among immunocompetent adults who previously received only monovalent vaccines (3).* The immunologic response after receipt of bivalent boosters among nursing home residents, who often mount poor immunologic responses to vaccines, remains unknown. Serial testing of anti-spike protein antibody binding and neutralizing antibody titers in serum collected from 233 long-stay nursing home residents from the time of their primary vaccination series and including any subsequent booster doses, including the bivalent vaccine, was performed. The bivalent COVID-19 mRNA vaccine substantially increased anti-spike and neutralizing antibody titers against Omicron sublineages, including BA.1 and BA.4/BA.5, irrespective of previous SARS-CoV-2 infection or previous receipt of 1 or 2 booster doses. These data, in combination with evidence of low uptake of bivalent booster vaccination among residents and staff members in nursing homes (4), support the recommendation that nursing home residents and staff members receive a bivalent COVID-19 booster dose to reduce associated morbidity and mortality (2).


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccines, Combined , Rhode Island , Antibody Formation , Ohio , Antibodies, Viral , Nursing Homes , Antibodies, Neutralizing
5.
MMWR Morb Mortal Wkly Rep ; 71(39): 1235-1238, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2056546

ABSTRACT

Nursing home residents continue to experience significant COVID-19 morbidity and mortality (1). On March 29, 2022, the Advisory Committee on Immunization Practices (ACIP) recommended a second mRNA COVID-19 vaccine booster dose for adults aged ≥50 years and all immunocompromised persons who had received a first booster ≥4 months earlier.* On September 1, 2022, ACIP voted to recommend bivalent mRNA COVID-19 vaccine boosters for all persons aged ≥12 years who had completed the primary series using monovalent vaccines ≥2 months earlier (2). Data on COVID-19 booster dose vaccine effectiveness (VE) in the nursing home population are limited (3). For this analysis, academic, federal, and private partners evaluated routine care data collected from 196 U.S. community nursing homes to estimate VE of a second mRNA COVID-19 vaccine booster dose among nursing home residents who had received 3 previous COVID-19 vaccine doses (2 primary series doses and 1 booster dose). Residents who received second mRNA COVID-19 vaccine booster doses during March 29-June 15, 2022, with follow-up through July 25, 2022, were found to have 60-day VE of 25.8% against SARS-CoV-2 (the virus that causes COVID-19 infection), 73.9% against severe COVID-19 outcomes (a combined endpoint of COVID-19-associated hospitalizations or deaths), and 89.6% against COVID-19-associated deaths alone. During this period, subvariants BA.2 and BA.2.12.1 (March-June 2022), and BA.4 and BA.5 (July 2022) of the B.1.1.529 and BA.2 (Omicron) variant were predominant. These findings suggest that among nursing home residents, second mRNA COVID-19 vaccine booster doses provided additional protection over first booster doses against severe COVID-19 outcomes during a time of emerging Omicron variants. Facilities should continue to ensure that nursing home residents remain up to date with COVID-19 vaccination, including bivalent vaccine booster doses, to prevent severe COVID-19 outcomes.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization , Humans , Immunization, Secondary , Nursing Homes , RNA, Messenger , SARS-CoV-2 , Vaccines, Combined
6.
EBioMedicine ; 80: 104066, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1850958

ABSTRACT

BACKGROUND: Nursing home (NH) residents have borne a disproportionate share of SARS-CoV-2 morbidity and mortality. Vaccines have limited hospitalisation and death from earlier variants in this vulnerable population. With the rise of Omicron and future variants, it is vital to sustain and broaden vaccine-induced protection. We examined the effect of boosting with BNT162b2 mRNA vaccine on humoral immunity and Omicron-specific neutralising activity among NH residents and healthcare workers (HCWs). METHODS: We longitudinally enrolled 85 NH residents (median age 77) and 48 HCWs (median age 51), and sampled them after the initial vaccination series; and just before and 2 weeks after booster vaccination. Anti-spike, anti-receptor binding domain (RBD) and neutralisation titres to the original Wuhan strain and neutralisation to the Omicron strain were obtained. FINDINGS: Booster vaccination significantly increased vaccine-specific anti-spike, anti-RBD, and neutralisation levels above the pre-booster levels in NH residents and HCWs, both in those with and without prior SARS-CoV-2 infection. Omicron-specific neutralisation activity was low after the initial 2 dose series with only 28% of NH residents' and 28% HCWs' titres above the assay's lower limit of detection. Omicron neutralising activity following the booster lifted 86% of NH residents and 93% of HCWs to the detectable range. INTERPRETATION: With boosting, the vast majority of HCWs and NH residents developed detectable Omicron-specific neutralising activity. These data provide immunologic evidence that strongly supports booster vaccination to broaden neutralising activity and counter waning immunity in the hope it will better protect this vulnerable, high-risk population against the Omicron variant. FUNDING: NIH AI129709-03S1, U01 CA260539-01, CDC 200-2016-91773, and VA BX005507-01.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunization, Secondary , Middle Aged , Nursing Homes , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
7.
Clin Infect Dis ; 75(1): e884-e887, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1692242

ABSTRACT

Antibody decline occurred from 2 weeks to 6 months post-BNT162b2 mRNA vaccination in nursing home (NH) residents and healthcare workers. Antispike, receptor-binding domain, and neutralization levels dropped >81% irrespective of prior infection. Notably, 69% of infection-naive NH residents had neutralizing antibodies at or below the assay's limit of detection.


Subject(s)
COVID-19 , Influenza Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Humans , Nursing Homes , RNA, Messenger , Vaccination
8.
Clin Infect Dis ; 73(11): 2112-2115, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1562012

ABSTRACT

After BNT162b2 messenger RNA vaccination, antibody levels to spike, receptor-binding domain, and virus neutralization were examined in 149 nursing home residents and 110 healthcare worker controls. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive nursing home residents' median post-second vaccine dose antibody neutralization titers are one-quarter that of SARS-CoV-2-naive healthcare workers.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Vaccines , Humans , Nursing Homes , RNA, Messenger , Vaccines, Synthetic
9.
Aging Clin Exp Res ; 33(11): 3151-3160, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525638

ABSTRACT

BACKGROUND: The BNT162b2 SARS-CoV-2 mRNA vaccination has mitigated the burden of COVID-19 among residents of long-term care facilities considerably, despite being excluded from the vaccine trials. Data on reactogenicity (vaccine side effects) in this population are limited. AIMS: To assess reactogenicity among nursing home (NH) residents. To provide a plausible proxy for predicting vaccine response among this population. METHODS: We enrolled and sampled NH residents and community-dwelling healthcare workers who received the BNT162b2 mRNA vaccine, to assess local or systemic reactogenicity and antibody levels (immunogenicity). RESULTS: NH residents reported reactions at a much lower frequency and lesser severity than the community-dwelling healthcare workers. These reactions were mild and transient with all subjects experiencing more local than systemic reactions. Based on our reactogenicity and immunogenicity data, we developed a linear regression model predicting log-transformed anti-spike, anti-receptor-binding domain (RBD), and neutralizing titers, with a dichotomous variable indicating the presence or absence of reported reactions which revealed a statistically significant effect, with estimated shifts in log-transformed titers ranging from 0.32 to 0.37 (all p < 0.01) indicating greater immunogenicity in subjects with one or more reported reactions of varying severity. DISCUSSION: With a significantly lower incidence of post-vaccination reactions among NH residents as reported in this study, the BNT162b2 mRNA vaccine appears to be well-tolerated among this vulnerable population. If validated in larger populations, absence of reactogenicity could help guide clinicians in prioritizing vaccine boosters. CONCLUSIONS: Reactogenicity is significantly mild among nursing home residents and overall, subjects who reported post-vaccination reactions developed higher antibody titers.


Subject(s)
COVID-19 , Vaccines , BNT162 Vaccine , COVID-19 Vaccines , Health Personnel , Humans , Nursing Homes , RNA, Messenger/genetics , SARS-CoV-2
10.
J Am Geriatr Soc ; 69(7): 1722-1728, 2021 07.
Article in English | MEDLINE | ID: covidwho-1066719

ABSTRACT

OBJECTIVE: To describe the frequency and timing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody detection in a convenience sample of skilled nursing facility (SNF) residents with and without confirmed SARS-CoV-2 infection. DESIGN: Retrospective analysis of SNF electronic health records. SETTING: Qualitative SARS-CoV-2 antibody test results were available from 81 SNFs in 16 states. PARTICIPANTS: Six hundred and sixty nine SNF residents who underwent both polymerase chain reaction (PCR) and antibody testing for SARS-CoV-2. MEASUREMENTS: Presence of SARS-CoV-2 antibodies following the first positive PCR test for confirmed cases, or first PCR test for non-cases. RESULTS: Among 397 residents with PCR-confirmed infection, antibodies were detected in 4 of 7 (57.1%) tested within 7-14 days of their first positive PCR test; in 44 of 47 (93.6%) tested within 15-30 days; in 182 of 219 (83.1%) tested within 31-60 days; and in 110 of 124 (88.7%) tested after 60 days. Among 272 PCR negative residents, antibodies were detected in 2 of 9 (22.2%) tested within 7-14 days of their first PCR test; in 41 of 81 (50.6%) tested within 15-30 days; in 65 of 148 (43.9%) tested within 31-60 days; and in 9 of 34 (26.5%) tested after 60 days. No significant differences in baseline resident characteristics or symptoms were observed between those with versus without antibodies. CONCLUSIONS: These findings suggest that vulnerable older adults can mount an antibody response to SARS-CoV-2, and that antibodies are most likely to be detected within 15-30 days of diagnosis. That antibodies were detected in a large proportion of residents with no confirmed SARS-CoV-2 infection highlights the complexity of identifying who is infected in real time. Frequent surveillance and diagnostic testing based on low thresholds of clinical suspicion for symptoms and/or exposure will remain critical to inform strategies designed to mitigate outbreaks in SNFs while community SARS-CoV-2 prevalence remains high.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 , SARS-CoV-2 , Skilled Nursing Facilities , Aged , Aged, 80 and over , Asymptomatic Infections/epidemiology , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing/statistics & numerical data , Early Diagnosis , Electronic Health Records/statistics & numerical data , Female , Health Services Needs and Demand , Humans , Male , Prevalence , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Skilled Nursing Facilities/standards , Skilled Nursing Facilities/statistics & numerical data , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , United States/epidemiology
11.
Clin Infect Dis ; 72(3): 513-514, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1060411

ABSTRACT

The global coronavirus pandemic is unlike any other since 1918. A century of dramatic medical advances has produced a public expectation that the medical field will rapidly provide solutions to restore normalcy. In less than 6 months, since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified, the massive international effort to develop a SARS-CoV-2 vaccine has generated more than 140 vaccines in different stages of development, with 9 already recruiting into clinical trials posted on ClinicalTrials.gov. The long-term strategy to handle coronavirus disease 2019 (COVID-19) will almost certainly rely on vaccines. But what type of protection can we realistically expect to achieve from vaccines and when?


Subject(s)
COVID-19 , Vaccines , Viral Vaccines , COVID-19 Vaccines , Humans , Motivation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL